496 research outputs found

    Tests of cosmic ray radiography for power industry applications

    Full text link
    In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wall thickness. This work is motivated by the need for radiographic methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.Comment: LA-UR-15-2212

    A New Limit on the Neutrinoless DBD of 130Te

    Full text link
    We report the present results of CUORICINO a cryogenic experiment on neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62 crystals of TeO2 with a total active mass of 40.7 kg. The array is framed inside of a dilution refrigerator, heavily shielded against environmental radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK in the Gran Sasso Underground Laboratory. Temperature pulses induced by particle interacting in the crystals are recorded and measured by means of Neutron Transmutation Doped thermistors. The gain of each bolometer is stabilized with voltage pulses developed by a high stability pulse generator across heater resistors put in thermal contact with the absorber. The calibration is performed by means of two thoriated wires routinely inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of 130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the lifetime of this process. Taking largely into account the uncertainties in the theoretical values of nuclear matrix elements, this implies an upper boud on the effective mass of the electron neutrino ranging from 0.2 to 1.1 eV. This sensitivity is similar to those of the 76Ge experiments.Comment: 4 pages, 2 figure

    Double-beta decay of 130^{130}Te to the first 0+^{+} excited state of 130^{130}Xe with CUORICINO

    Get PDF
    The CUORICINO experiment was an array of 62 TeO2_{2} single-crystal bolometers with a total 130^{130}Te mass of 11.311.3\,kg. The experiment finished in 2008 after more than 3 years of active operating time. Searches for both 0ν0\nu and 2ν2\nu double-beta decay to the first excited 0+0^{+} state in 130^{130}Xe were performed by studying different coincidence scenarios. The analysis was based on data representing a total exposure of N(130^{130}Te)\cdott=9.5×10259.5\times10^{25}\,y. No evidence for a signal was found. The resulting lower limits on the half lives are T1/22ν(130Te130Xe)>1.3×1023T^{2\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>1.3\times10^{23}\,y (90% C.L.), and T1/20ν(130Te130Xe)>9.4×1023T^{0\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>9.4\times10^{23}\,y (90% C.L.).Comment: 6 pages, 4 figure

    Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB

    Get PDF
    We present results of a dark matter search performed with a 0.6 kg day exposure of the DAMIC experiment at the SNOLAB underground laboratory. We measure the energy spectrum of ionization events in the bulk silicon of charge-coupled devices down to a signal of 60 eV electron equivalent. The data are consistent with radiogenic backgrounds, and constraints on the spin-independent WIMP-nucleon elastic-scattering cross section are accordingly placed. A region of parameter space relevant to the potential signal from the CDMS-II Si experiment is excluded using the same target for the first time. This result obtained with a limited exposure demonstrates the potential to explore the low-mass WIMP region (<10 GeV/c2c^{2}) of the upcoming DAMIC100, a 100 g detector currently being installed in SNOLAB.Comment: 11 pages, 11 figure

    Imaging the inside of thick structures using cosmic rays

    Full text link
    The authors present here a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as "multiple scattering muon radiography", relies on the use of cosmic-ray muons as probes. The work described in this article was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. Its result shows the effectiveness of the technique as a tool to radiograph thick structures and image denser object inside them

    Gigahertz (GHz) hard x-ray imaging using fast scintillators

    Get PDF
    Gigahertz (GHz) imaging technology will be needed at high-luminosity X-ray and charged particle sources. It is plausible to combine fast scintillators with the latest picosecond detectors and GHz electronics for multi-frame hard Xray imaging and achieve an inter-frame time of less than 10 ns. The time responses and light yield of LYSO, LaBr_3, BaF_2 and ZnO are measured using an MCP-PMT detector. Zinc Oxide (ZnO) is an attractive material for fast hard X-ray imaging based on GEANT4 simulations and previous studies, but the measured light yield from the samples is much lower than expected
    corecore